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We present a systematic study of dynamical heterogeneity in a model for permanent gels upon approaching
the gelation threshold. We find that the fluctuations of the self-intermediate scattering function are increasing
functions of time, reaching a plateau whose value, at large length scales, coincides with the mean cluster size
and diverges at the percolation threshold. Another measure of dynamical heterogeneities—i.e., the fluctuations
of the self-overlap—displays instead a peak and decays to zero at long times. The peak, however, also scales
as the mean cluster size. Arguments are given for this difference in the long-time behavior. We also find that
the non-Gaussian parameter reaches a plateau in the long-time limit. The value of the plateau of the non-
Gaussian parameter, which is connected to the fluctuations of diffusivity of clusters, increases with the volume
fraction and remains finite at the percolation threshold.
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I. INTRODUCTION

In the context of the glass transition the concept of dy-
namical heterogeneities has been very fecund �1–12�. In
glassy systems the correlated motion of particles manifests
as significant fluctuations around the average dynamics,
strongly increasing as the transition is approached. These
heterogeneities in the dynamics have been studied quan-
titatively via the so-called dynamical susceptibility �3�
�4�t�=N��F2�t��− �F�t��2�, obtained as the fluctuations of a
suitable time-dependent correlator F�t� �where N is the
number of particles and �¯� is the ensemble average�.
Two quantities are usually considered: The fluctuations of
the self-intermediate scattering functions �ISFs� �6,13�
�4�k , t�=N����s�k , t��2�− ��s�k , t��2� usually measured in nu-
merical simulations and the fluctuations of the time-
dependent overlap �14–16� �4

Q�t�=N��q�t�2�− �q�t��2�, which,
first introduced in p-spin glass models �3�, has been calcu-
lated also within mode-coupling theory �3,13�. For the fluc-
tuations of the overlap, the role of the inverse of the wave
vector k is played by the parameter a characterizing the over-
lap function, which is different from zero only if a particle
has moved a distance less than the fixed value a. In the usual
glassy systems the behavior observed in the dynamical sus-
ceptibility is essentially the same despite different choices
F�t� �4,6,13�: �4�t� grows as a function of time, reaches a
maximum, and then decreases to a constant, consistently
with the transient nature of the dynamical heterogeneities.
Some differences in the k dependence of these two quantities
were, however, found in a model for glasses �17�.

Recently, dynamical heterogeneities have been studied in
other complex systems, such as granular media �18–21� and
attractive colloidal systems �22–26�, where behaviors quali-
tatively similar to that found in glasses are observed. In par-
ticular, Ref. �26� reports a systematic study of the dynamic

susceptibility in colloidal systems along the attractive glassy
line. Typically the dynamical susceptibility, defined as the
fluctuations of the self-ISF, displays a well-pronounced peak.
However, in the attraction-dominated limit, the dependence
on both time and wave vector markedly differs from that in
standard repulsion-dominated systems �hard-sphere limit�.

In a recent Letter �27� we have studied the behavior of the
dynamical susceptibility �4 defined as the fluctuations of the
self-ISF, in a model for permanent gel, where bonds are
modeled using a finitely extendable nonlinear elastic �FENE�
potential �29,30� between neighboring particles. It was found
that the behavior of �4�k , t� is drastically different from that
found in glasses. In fact, it grows in time until it reaches
a plateau in the limit of large time t, without decaying to
1. The value of the plateau in the limit of low wave vector,
k→0, was in fact found to coincide with the mean cluster
size. As a consequence, as the system approaches the gel
transition �i.e., the percolation threshold�, the value of the
plateau diverges. For a fixed value of k, the value of the
plateau coincides with the mean cluster size up to a linear
size of the order of the inverse of k. Therefore, for any
k�0 �k�kmin in our study�, the plateau never diverges: it
decreases as k increases and eventually goes to 1.

Here we present a systematic study of this FENE model
for permanent gels �27�. Moreover, we compare the behavior
of the fluctuations of the self-ISF and of the self-overlap, and
find a marked difference between the two. The first one, as
mentioned above, is an increasing function of time and tends
to a plateau, whereas the second one reaches a maximum and
then decreases. However, the value of the maximum scales
as the value of the plateau of the fluctuations of the self-ISF,
with the same critical exponent of the mean cluster size.

The reason why these two quantities differ so drastically
in the long-time limit is the following: the fluctuation of the
overlap is related to the correlations between the event that a
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monomer has moved a distance less than a in a time interval
t and the event that another monomer has also moved a dis-
tance less than a in the same interval t. At long time t all
particles have moved a distance larger than a and therefore
such correlations are zero. On the other hand, in the long-
time limit the fluctuation of the self-ISF is related to the
correlation of the distance separating monomers i and j at
time 0 and the distance between the same monomers at time
t. This quantity is different from zero if the particles i and j
are in the same cluster.

Although the long-time limit of the two quantities �4�k , t�
and �4

Q�a , t� is different in gels with permanent bonds, they
have in common not only the property that the plateau and
maximum scale in the same way, but also one key feature
which is the strong length scale dependence: The peak of the
fluctuations of the self-part of the overlap and the plateau of
the fluctuations of the self-ISF decrease strongly as the wave
vector k �or 1 /a� increases, which is a sign that clusters of
bonded particles dominate the dynamics. The same feature is
also valid for strong colloidal gels �31�. This strong length
scale dependence of the dynamical susceptibility seems to be
a distinctive sign of permanent or strong colloidal gelation,
compared with the �attractive or repulsive� glass transition.

Finally, we measure the non-Gaussian parameter �2 and
find that, due to the presence of clusters, it is different from
zero also in the long-time limit. However, its plateau value,
which is connected to diffusivity, remains finite upon ap-
proaching the transition.

In Sec. II we introduce the model used and give the de-
tails of the numerical simulations. We analyze the self-ISF
and its fluctuations in Sec. III and the self-overlap and its
fluctuations in Sec. IV. The mean-squared displacement and
the non-Gaussian parameter are discussed in Sec. V, whereas
Sec. VI contains the concluding remarks. Finally, in the Ap-
pendix we investigate the static properties of the sol-gel tran-
sition, corresponding to the percolation of permanent bonds
between particles �32,33�.

II. MODEL AND NUMERICAL SIMULATIONS

We consider a three-dimensional system of N particles
interacting with a soft potential given by the Weeks-
Chandler-Andersen �WCA� potential �28�

Uij
WCA = �4�	��/rij�12 − ��/rij�6 +

1

4

 , rij � 21/6� ,

0, rij � 21/6� ,
� �1�

where rij is the distance between particles i and j
After equilibration, particles less than distant R0 are

linked by adding an attractive potential

Uij
FENE = �− 0.5k0R0

2 ln�1 − �rij/R0�2� , rij � R0,

	 , rij � R0,
 �2�

representing a FENE potential, which was first introduced in
Ref. �29� and is widely used to study linear polymers �30�.
We choose k0=30� /�2 and R0=1.5� as in Ref. �30� in order
to avoid any bond crossing and to use an integration time
step 
t not too small �34�. The introduction of the FENE

potential leads to the formation of permanent bonds among
all the particles whose distance at that time is smaller than
R0.

We have performed molecular dynamics simulations of
this model: The equations of motion were solved in the ca-
nonical ensemble �with a Nosé-Hoover thermostat� using the
velocity-Verlet algorithm �35� with a time step 
t=0.001��,
where ��=��m /��1/2 is the standard unit time for a Lennard-
Jones fluid and m is the mass of particle. We use reduced
units where the unit length is �, the unit energy is �, and the
Boltzmann constant kB is set equal to 1. We use periodic
boundary conditions and average all the investigated quanti-
ties over 32 independent configurations of the system.

The temperature is fixed at T=2, and the volume fraction
=��3N /6L3 �where L is the linear size of the simulation
box in units of �� is varied from =0.02 to =0.12. Using
the percolation approach, we identify the gel phase as the
state in which there is a percolating cluster �32,33�. A finite-
size scaling analysis is presented in the Appendix, showing
that this transition is in the universality class of random per-
colation. We find that the threshold is c=0.09�0.01. In
particular, we obtain that the cluster size distribution
ns�s−� for =c with �=2.1�0.2, the mean cluster size
S��=�s2ns /�sns��c−�−� with �=1.8�0.1, and the
connectedness length ���c−�−� with �=0.88�0.01. In
the following we fix the number of particles, N=1000.

Due to the introduction of bonds, spatial correlations ap-
pear at low wave vectors. Although these correlations in-
crease as a function of the volume fraction, the low-k limit of
the static structure factor S�k� is always small compared to
the number of particles, and no phase separation is observed.

III. SELF-INTERMEDIATE SCATTERING FUNCTION
AND ITS FLUCTUATIONS

Relevant information on the relaxation dynamics over dif-
ferent length scales can be obtained from the sel-ISF Fs�k , t�:

Fs�k,t� = ���s�k,t��� , �3�

where �¯� is the thermal average over a fixed bond configu-
ration, �¯� is the average over 32 independent bond configu-
rations of the system, and

�s�k,t� =
1

N
�
i=1

N

eik�·�r�i�t�−r�i�0��. �4�

In Fig. 1, Fs�k , t� is plotted as a function of t for different
, respectively, for kmin=2� /L�0.35 �main frame� and
k�7 �inset�. At the smallest wave vector, for very low values
of the volume fraction, the self-ISF decays to zero following
an exponential behavior. As the volume fraction is increased
towards the percolation threshold, we observe the onset of a
stretched exponential decay e−�t / ���

, with � decreasing as a
function of  �for instance, �=0.75�0.01 for =0.07 and
�=0.58�0.02 for =0.085�. The cluster size distribution
has started to widen towards the percolation regime �see the
Appendix�, and therefore, over sufficiently large length
scales, the behavior of Fs�k , t� is due to the contribution of
different relaxation processes, characterized by different re-
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laxation times, whose superposition produces a detectable
deviation from an exponential law. Near the transition
threshold the long-time decay is characterized by a power-
law behavior, indicating that the relaxation over this length
scale is controlled by the formation of the percolating cluster,
with a critically growing relaxation time. If the volume frac-
tion increases further, the decay becomes slower and slower,
showing a logarithmic behavior. These features of the dy-
namics well reproduce the experimental findings �36�. More-
over, they agree with results obtained via numerical simula-
tions of different gelation models �37–39�. At large wave
vectors �see the inset of Fig. 1� and low volume fractions,
Fs�k , t� decays to zero as e−�t / ��2

�solid curves in Fig. 1�,
corresponding to the ballistic regime of particle motion.

From the self-ISF we calculate the structural relaxation
time ��k ,�, defined as the time for which Fs(k ,��k�)�0.1.
In Fig. 2, ��k ,� is plotted for different values of k as a
function of the volume fraction . For k=kmin, we find that
��kmin ,� is well fitted by a power law diverging at the ge-
lation threshold with an exponent f �1.22. Increasing k, no
divergence is observed at the threshold, signaling that no
structural arrest occurs over length scales less than the box
size L.

In Fig. 3 and in its inset we plot, respectively, k2��k ,�
and k��k ,� as a function of the wave vector for different
volume fractions. The inset of Fig. 3 shows that ��1 /k for
large wave vectors, reflecting the ballistic diffusion for short
times �see Sec. V�. Interestingly in the limit of small wave

vectors k2� does not tend to a constant. This unusual result is
essentially due to the fact that the the non-Gaussian param-
eter �40� �2�t�= 3
r4�t�

5�
r2�t��2 −1 is nonzero in the long-time limit,

as discussed in detail in Sec. V. In this case the Gaussian
approximation of the probability distribution of particle dis-
placements is not valid, and the self-ISF Fs�k , t� cannot be
written as a Gaussian even in the limit of small wave vector.

FIG. 1. �Color online� Main frame: self-ISF for
=0.02,0.07,0.08,0.09,0.1 �from bottom to top� and k�0.35 as a
function of time t. The lines are fitting curves: For �c the decay
is well fitted by an exponential behavior �dashed line�; if 
approaches c, a stretched exponential decay appears, with
�=0.75�0.01 for =0.07 �dotted line�. For =0.09 the decay is
well fitted by a power law �t−c with c=0.65�0.03 �solid line�.
Inset: self-ISF for k�7 and the same volume fractions of the main
frame.

FIG. 2. �Color online� Structural relaxation time ��k ,� as a
function of the volume fraction, for wave vector
k�0.35,0.6,1.0,2.0,3.0,7.0 �from top to bottom�. The solid line is
the fitting curve: ��kmin ,���c−�−f, with f �1.22. Dashed lines
are guides for the eye.

FIG. 3. �Color online� Main frame: k2��k ,� as a function of k,
for =0.05,0.06,0.07,0.08,0.09,0.1 �from bottom to top�. Inset:
k��k ,� as a function of k for the same volume fractions of the
main frame.
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We now analyze and discuss the behavior of the fluctua-
tions of the self-ISF—i.e., the dynamical susceptibility

�4�k,t� = N����s�k,t��2� − ��s�k,t��2� . �5�

In Fig. 4 �4�k , t� is plotted for k=kmin and different volume
fractions. Differently from the behavior typically observed in
glassy systems, we find that, for �c, �4�k , t� is a mono-
tonically increasing function of time tending to a plateau in a
time of the order of the relaxation time ��kmin�. The value of
the plateau diverges as the mean cluster size as the percola-
tion threshold is approached �27�. For �c the system is
out of equilibrium; �4�k , t� continues increasing as a function
of time, without reaching any asymptotic value within the
simulation time. We briefly discuss the main arguments ex-
plaining the above result, presented in Ref. �27�, where it
was in fact shown that, for k→0 and t→	, the dynamical
susceptibility �4�k , t� tends to the mean cluster size. We de-
fine �as�k ,�� limN→	 limt→	 �4�k , t�. Being
limt→	��s�k , t��=0, we have

�as�k,� = lim
N→	

1

N	�
i,j=1

N

Cij�k�
 , �6�

where Cij�k�=limt→	�eik�·�r�i�t�−r�j�t��e−ik�·�r�i�0�−r�j�0���= ��eik�·�r�i−r�j���2.
Here we have used the fact that, for large enough time t,
the term e−ik�·�r�i�t�−r�j�t�� is statistically independent from
e−ik�·�r�i�0�−r�j�0��, so that we can factorize the thermal average.
We separate the sum over connected pairs ��ij =1—i.e., pairs
belonging to the same cluster� and disconnected pairs
��ij =0—i.e., pairs belonging to different clusters�, so that

�as�k,� = lim
N→	

1

N	�
i,j=1

N

�ijCij�k�
 +
1

N	�
i,j=1

N

�1 − �ij�Cij�k�
 .

�7�

If particles i and j are not connected, for any fixed value of
k�0, the quantity Cij�k� is O�1 /N2� �41�. As there are at
most N2 disconnected pairs, the second term on the night-

hand side �rhs� of Eq. �7� is O�1 /N� and can be neglected in
the thermodynamical limit.

For �c, clusters will have at most a linear size of
order �, so that the relative distance �r�i−r� j� of connected
particles will be smaller than �. Therefore we have
limk→0 �ijCij�k�=�ij and

lim
k→0

�as�k,� = lim
N→	

1

N	�
i,j=1

N

�ij
 = S , �8�

where S is the mean cluster size. As shown in Ref. �27�,
numerical data confirm this result.

In Fig. 5, �4�k ,� is plotted for =0.09 and different
wave vectors. For each value of the wave vector, �4�k ,�
reaches a plateau after a characteristic time of the order of
the relaxation time ��k�. The asymptotic value �as�k ,c� at
low wave vectors follows a scaling behavior as a function of
k �inset of Fig. 5�: at the transition threshold the exponent is
2.03�0.02, consistent, within the numerical accuracy, with
the prediction 2−� of random percolation �42�. This result
shows that if one varies the wave vector k �and 2� /k���,
the dynamical susceptibility is able to detect the self-
similarity of the structure of the system due to the percola-
tion transition. Using scaling arguments �27�, we can write
�as�k ,�=k�−2f�k��, where f�z� is a function, which tends to
a constant for small z, whereas it behaves as z�/� for large
values of z. As shown in Ref. �27�, data support this scenario.
All these results coherently show how in the present system
the asymptotic value of the dynamical susceptibility can be
related to the cluster size. Not only do our results indicate
that the percolation exponents can be measured in a direct

FIG. 4. �Color online� Dynamical susceptibility �4�k , t� as a
function of time for k=kmin and different volume fractions
=0.05,0.06,0.07,0.08,0.09 �from bottom to top�.

FIG. 5. �Color online� Main frame: dynamical susceptibility
�4�k , t� as a function of time for =0.09 and
k=0.35,0.61,0.99,1.40,2.10,3.96 �from top to bottom�. Inset:
asymptotic values of the susceptibility, �as�k ,c�, as a function of
the wave vector k. Data are fitted with a power law �k−2.03�0.02, in
agreement with the exponent 2−� of random percolation.
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way, by developing techniques to measure the dynamical
susceptibility, but they also state that the asymptotic value of
the dynamical susceptibility plays the same role as the static
scattering function near the liquid-gas critical point.

IV. SELF-OVERLAP AND ITS FLUCTUATIONS

In the context of glassy systems, a time-dependent order
parameter was introduced �14–16�, which measures the num-
ber of “overlapping” particles in two configurations sepa-
rated by a time interval t,

q�t� =
1

N
� dr�1dr�2��r�1,0���r�2,t�w��r�1 − r�2��

=
1

N
�

i
�

j

w��r�i�0� − r� j�t��� , �9�

where ��r� , t�=�i�(r�−r�i�t�) is the density in r� at time t and
w��r�1−r�2 � � is an “overlap” function that is 1 for �r�1−r�2 � �a
and zero otherwise �43�.

In Ref. �4� the authors separate q into self and distinct
components, q�t�=qS�t�+qD�t�. The self part is given by

qS�t� =
1

N
�

i

w��r�i�0� − r�i�t��� , �10�

which corresponds to terms of Eq. �9� with i= j and measures
the number of particles that move less than a distance a in a
time interval t. In Ref. �4� it was shown that on average the
dominant term is given by the self-part.

Here we measure QS�t�= ��qS�t��� for two choices of a,
0.15 and 3, respectively corresponding to 1 /a�kmin and
1 /a�kmin. QS�t� is plotted in Fig. 6 for different values of

the volume fraction. We have verified by numerical calcula-
tions that for small enough a, the relevant contribution to
Q�t�= ��q�t��� is given by QS�t�, since the probability that a
particle replaces within a radius a another particle is small.
For all the values of a and of  considered, QS�t� at long
times is well fitted by a power law.

Another interesting method to investigate the spatially
heterogeneous dynamics, generally used in glassy systems, is
the measure of the dynamical susceptibility obtained by the
fluctuations of the time-dependent overlap �14–16�
�̄4

Q�a , t�=N��q�t�2�− �q�t��2�, where q�t� is given by Eq. �9�.
In glassy systems this quantity essentially presents the same
features as the fluctuations of the self-ISF.

Here we measure the fluctuations of the self-part of the
overlap:

�4
Q�a,t� = N��qS�t�2� − �qS�t��2� , �11�

for different choices of a, ranging from 0.15 to 3. In Fig. 7
we plot �4

Q�a , t� for a=3 and different values of .
We see that differently from the fluctuations of the self-

ISF, here �4
Q�a , t� displays a peak, whose value increases and

diverges as the the gel transition is approached. Indeed, the
value of the peak differ from the value of the plateau
�as�kmin� only for a constant factor �see the inset of Fig. 7�
and therefore scales with the same exponent of the mean
cluster size � �44�. Even if the long-time limit of �4

Q�a , t� is
strongly different from the one observed in �4�k , t�, both
fluctuations manifest a strong dependence on the length
scale. In fact, the peak of �4

Q�a , t� strongly decreases as a
decreases �see Fig. 8�. This may be interpreted as a sign that
clusters of bonded particle dominate the dynamics.

FIG. 6. �Color online� Main frame: Self-overlap QS�t�
for a=3 and different volume fractions from 
=0.02,0.05,0.06,0.07,0.08,0.09,0.1 �from bottom to top�. Inset:
self-overlap for the same values of  of main frame and a=0.15.

FIG. 7. �Color online� Main frame: fluctuations of
the self-overlap �4

Q�a , t� for a=3 and 
=0.02,0.05,0.06,0.07,0.08,0.09,0.1 �from bottom to top�. Inset:
10·�4

Q�t*� �circles� for a=3 and �as�kmin ,� �triangles� as a function
of �c−�.
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Our data and these considerations suggest that heteroge-
neities detected by �4

Q�a , t� are due to the presence of clus-
ters. However, despite the permanent nature of clusters, fluc-
tuations of the self-overlap �4

Q�a , t� decay to zero in the long-
time limit. This is due to the form of the overlap function
w��r�i�0�−r�i�t� � �, which is zero when a particle has moved a
distance greater than a. Therefore two particles in the same
cluster will contribute to �4

Q�a , t� if the center of mass of the
cluster has moved a distance less than a. In fact, when the
cluster moves a distance larger than a, due to the form of the
overlap function, the contribution to �4

Q�a , t� vanishes.
Therefore we expect that for 1 /a�kmin the peak is propor-
tional to the mean cluster size and occurs at a time t* of the
order of the time in which the center of the typical cluster of
dimension � has moved a distance of the order of a.

V. MEAN-SQUARE DISPLACEMENT AND
THE NON-GAUSSIAN PARAMETER

Finally we have measured the mean-square displacement
�MSD�


r2�t� =
1

N
�
i=1

N

���r�i�t� − r�i�0��2�� , �12�

where r�i�t� is the position of the ith particle at time t. In the
main frame of Fig. 9 the MSD is shown for different volume
fractions. Due to the Newtonian dynamics, we find at very
short time a ballistic behavior 
r2�t�� t2, followed by a
crossover to a diffusive regime 
r2�t�� t. The long-time dif-
fusive regime is always recovered for all the volume frac-
tions considered, indicating that even at the percolation
threshold this quantity is dominated by free motion of par-
ticles or clusters. Accordingly, no divergence of the inverse
diffusion coefficient is found at the percolation threshold,
where the numerous small-size clusters continue to diffuse
into the large mesh of the spanning cluster.

We have also evaluated the MSD of the clusters and ex-
tracted their diffusion coefficient as a function of the cluster
size s. In particular, we obtained that for =c, D�s� for
large s is fitted by a power law s−h with h=1.0�0.1
�see inset of Fig. 9�. Following �38� we expect
D�s��1 /s�d−2+f/��/df, where d=3 is the Euclidean dimension,
f is the exponent which gives the divergence of the viscosity,
��0.88 is the critical exponent which gives the divergence
of the connectedness length �see the Appendix�, and
df �2.4 is the fractal dimension of the spanning cluster at the
threshold �see the Appendix�. Using these values we obtain a
prediction for the exponent, which gives the divergence of
the viscosity at the threshold f =��hdf −d+2��1.23, in
agreement within the errors with our data for the structural
relaxation time �see Sec. III and Fig. 2�.

In order to characterize the displacement of particles we
have calculated the self-part of the Van Hove function �45�:

Gs�r,t� =
1

N	��
i=1

N

�„r − �r�i�t� − r�i�0��…�
 . �13�

If the motion of particles is diffusive with a diffusion coef-
ficient D, Gs�r , t�= �1 /4�Dt�3/2e�−r2/4Dt�, where r is the dis-
tance traveled by a particle in a time t. In the inset of Fig. 10
we plot the self Van Hove function for a fixed volume frac-
tion at different times. Our results indicate that for short
times and short distances the function is well fitted by a
Gaussian. For long distances and long times, the Van Hove
function is well fitted by an exponential decay. An exponen-
tial decay has been observed in different glassy systems for
intermediate times �46�.

The deviation from the Gaussian distribution at long
times, observed in our system, indicates that some particles

FIG. 8. �Color online� Main frame: fluctuations of the self-
overlap �4

Q�a , t� for =0.1 and a=0.15,0.5,1 ,1.5,2 ,2.5,3 �from
bottom to top�.

FIG. 9. �Color online� Main frame: mean-square displacement
for =0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.12. Inset: diffusion
coefficient D�s� as a function of the cluster size s for =c.
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move faster than others, due to the presence of clusters. Par-
ticles belonging to different clusters have a different diffu-
sion coefficient depending on the cluster size. As a conse-
quence, we suggest that, in the diffusive regime, Gs�r , t� does
not have a Gaussian form, but it is instead given by a super-
position of Gaussians,

Gs�r,t� = �
s

sns� 1

4�D�s�t�
3/2

e−r2/4D�s�t, �14�

where D�s� is the diffusion coefficient of cluster of size s and
ns is the cluster size distribution.

In Fig. 10 we compare our data with Gs�r , t� calculated
using Eq. �14� and D�s� obtained from the simulations. As
we can see in the figure, data are in good agreement with our
predictions, provided that time is sufficiently long for clus-
ters diffusing with diffusion coefficient D�s�.

In agreement with this finding, the non-Gaussian param-
eter, which is a measure of the departure from the Gaussian
behavior of the probability distribution of the particle dis-
placements, does not go to zero at long times. The non-
Gaussian parameter is defined as �40�

�2�t� =
3
r4�t�

5�
r2�t��2 − 1, �15�

where 
r4�t�= 1
N�i=1

N ���r�i�t�−r�i�0��4�� and it is zero if the
probability distribution of the particle displacements is
Gaussian.

In glassy systems �2�, �i� on the time scale at which the
motion of the particles is ballistic, �2 is zero; �ii� upon en-

tering the time scale of the � relaxation, �2 starts to increase;
�iii� on the time scale of the � relaxation, �2 decreases to its
long-time limit, zero. The maximum value of �2 increases
with decreasing temperature, signaling that the dynamics be-
comes more heterogeneous.

In the present model for permanent gels, we find that �i�
as in glasses, �2 is always zero on the time scale at which the
motion of the particles is ballistic; �ii� it tends in the long-
time limit to a plateau value, which increases with increasing
volume fraction; �iii� at low volume fraction, �2 has a maxi-
mum at intermediate times, which disappears upon ap-
proaching the gelation threshold; �iv� no critical behavior is
observed at the gelation threshold �see Fig. 11�.

Within our interpretation the asymptotic value of the non-
Gaussian parameter, using Eq. �14� may be written in the
following form:

�2
as =

�ssnsD
2�s�

��ssnsD�s��2 − 1 =
D2 − D̄2

D̄2
, �16�

where, for each bond configuration, �¯� is the average over
the cluster distribution. We have verified that �2

as coincides

with D2−D̄2

D̄2
within the errors. Hence our results indicate that

the non-Gaussian parameter tends to a plateau given by the
ratio of two quantities, which both have no critical behavior
at the percolation threshold. In summary, as the fluctuations
of the self-ISF, the non-Gaussian parameter does not decay
to zero in the long-time limit, due to the presence of perma-
nent clusters. However, the main contribution to �2 comes
from the numerous finite clusters �the bigger the cluster, the
lower its diffusion coefficient D�s�, and consequentially its
contribution to �2�, so that no criticality approaching the
percolation threshold is observed in the non-Gaussian param-
eter �Fig. 11�.

FIG. 10. �Color online� Main frame: the self-part of the Van
Hove distribution for =0.09 and time t=1285.02. The solid line is
obtained from the diffusion coefficient of clusters using Eq. �14�.
Inset: the self-part of the Van Hove distribution for =0.09 and
different times t=0.469,6.739,93.199 �from left to right�. The lines
are Gaussian fitting functions.

FIG. 11. �Color online� Non-Gaussian parameter �2�t� as a func-
tion of time t for =0.05,0.06,0.07,0.08,0.09,0.1,0.12.
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VI. CONCLUSION

We have presented a molecular dynamics study of a
model for permanent gels and investigated its static and dy-
namical properties. Usually the sol-gel transition, marked by
the divergence of viscosity and the onset of an elastic modu-
lus, is interpreted in terms of the appearance of a percolating
cluster of monomers linked by bonds �32,33,42�. While the
viscosity and the elastic modulus can be measured directly,
usually the experimental determination of percolative prop-
erties needs the manipulation of the sample �for a review see
�47� and references therein�; i.e. the sample is dissolved in a
known quantity of solvent in such a way that each cluster is
separated from the others. Our results identify the thermody-
namical observable associated with the cluster properties in a
gelling system and, via the measure of the fluctuations of the
self-ISF, allow us to obtain the critical exponents without
such a manipulation of the sample.

In our model the formation of permanent bonds between
the particles leads to a percolation transition in the univer-
sality class of random percolation. The percolation threshold
coincides with the gelation threshold, marked by the slowing
down of dynamics on length scale of the whole system. We
have found that the behavior of the self-ISF in the sol phase
and near the threshold is in agreement with typical experi-
ments on gelling systems. In chemical gels the onset of a
stretched exponential decay is typically associated to the
wide cluster size distribution close to the gelation threshold,
producing a wide distribution of relaxation times. At the per-
colation threshold, the longest relaxation time diverges due
to the critical growing of the percolation correlation length,
producing a long-time power-law decay. Our results confirm
this picture, but new insights are obtained with a study of the
dynamical heterogeneities, in terms of fluctuations of differ-
ent correlation functions. In the present model for permanent
gels, the fluctuations of the self-overlap present always a
peak, whereas the fluctuations of the self-ISF are monotoni-
cally increasing with time. Differently from glassy systems,
the fluctuations of the self-ISF tend in the long-time limit to
a plateau, whose value, for the lowest wave vector, coincides
with the mean cluster size. The behavior of the non-Gaussian
parameter as a function of time is qualitatively similar: in the
long-time limit it reaches a plateau, due to the contribution of
particles belonging to different clusters with a size-
dependent diffusion coefficient. Nevertheless, the value of
the plateau does not diverge at the gelation transition, being
dominated by the presence of small clusters with finite dif-
fusivity.

This study has shed some light on the differences between
the dynamics and the dynamical heterogeneities in glasses
and chemical gels. We have been able to clarify that, when
clusters of bonded particles are present, different time corr-
elators can deliver very different information whereas in the
studies on glasses they are often used interchangeably. On
this basis, these findings have interesting implications for the
study of gels due to nonpermanent bonds, as in the case of
colloidal gels. In fact, our study also indicates a possible way
to discriminate between a gel-like behavior and a glass-like
behavior in these systems. Our results strongly suggest that,
if heterogeneities are due to clusters of particles connected

by permanent �or persistent� bonds, as in permanent �or col-
loidal� gels, the behavior of the “time-dependent order pa-
rameter,” whose fluctuations reveal the presence of heteroge-
neities in the dynamics, may be quite different. However,
both quantities show a strong length scale dependence �both
strongly decrease as k or 1 /a increase�, which seems to be
the distinct sign of �permanent or colloidal� gelation com-
pared with the �attractive or repulsive� glass transition �31�.
This result is confirmed by a recent work �48�, where it has
been found that, in a model for colloidal gels, at low volume
fraction, the fluctuations of the self-ISF for small wave vec-
tor display a dependence on time, which is dramatically dif-
ferent from the one found at higher volume fraction �23,26�
in the glassy regime. As a final remark, it is interesting to
note that in the model here discussed the dynamical suscep-
tibility is similar to that observed in a spin glass model with
quenched interactions �49�, suggesting a possible common
description of the phase transition involved, as also proposed
elsewhere �50�.
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APPENDIX: PERCOLATION TRANSITION

In this appendix, with a finite-size scaling analysis, the
percolation threshold and the critical exponents are obtained.
We find that the percolation of permanent bonds, correspond-
ing to the sol-gel transition �32,33�, is in the universality
class of random percolation.

FIG. 12. �Color online� Main frame: percolation probability
�� ,L� as a function of the volume fraction  for boxes of size
L=15,30,40,60. Inset: data collapse obtained plotting �� ,L� ver-
sus �−c�L1/� with �=0.88 and c=0.09.
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Varying the volume fraction , we have measured the
percolation probability ��� �defined as the average number
of configurations where a percolating cluster is found�, the
cluster size distribution ns, and the mean cluster size
S��=�s2ns /�sns. For each volume fraction we have used
simulation boxes of different size L and, from a standard
finite-size scaling analysis �42�, we have obtained the perco-
lation threshold c and the critical exponents � �which gov-
erns the power-law divergence of the connectedness length
���−c�−� as the transition threshold is approached from
below� and � �which governs the power-law divergence of
the mean cluster size S��−c�−��. The percolation thresh-
old and the critical exponents obtained from the data shown
in Figs. 12 and 13 are, respectively, c=0.09�0.01,
�=0.88�0.05, and �=1.85�0.05. The cluster size distribu-
tion ns for =c, shown in main frame of Fig. 14, follows a

power-law behavior ns�s−� with a Fisher exponent
�=2.1�0.2.

Finally in the inset of Fig. 14 the radius of gyration, Rg, as
a function of the mass s of clusters is plotted. The data are
well fitted by a power law with exponent 1 /df =0.42�0.03
�solid line in figure�, which gives df =2.4�0.1, in agreement
with the fractal dimension of the random percolation clusters
in 3D, df �2.5. The measured values of the critical
exponents satisfy the hyperscaling relations �2�+�=�d,
df =d−� /�, and �=2+ �d−df� /df �42�� and are in good
agreement with those of the 3D random percolation
��=0.88, �=1.80, and �=2.18 �42��.
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